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Theories underpin science. In biology, theories are often formalized in the form of mathematical models, which may render them inaccessible to 
those lacking mathematical training. In the present article, we consider how theories could be presented to better aid understanding. We provide 
concrete recommendations inspired by cognitive load theory, a branch of psychology that addresses impediments to knowledge acquisition. 
We classify these recommendations into two classes: those that increase the links between new and existing information and those that reduce 
unnecessary or irrelevant complexities. For each, we provide concrete examples to illustrate the scenarios in which they apply. By enhancing a 
reader’s familiarity with the material, these recommendations lower the mental capacity required to learn new information. Our hope is that 
these recommendations can provide a pathway for theoreticians to increase the accessibility of their work and for empiricists to engage with 
theory, strengthening the feedback between theory and experimentation.
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Progress in science benefits from a healthy feedback   
between theoretical and empirical work. Although 

most ecologists and evolutionary biologists agree on the 
importance of this feedback for scientific progress, self-
identified theoreticians and empiricists alike believe that, 
in practice, instances of these feedbacks are more of an 
exception than a rule (Haller 2014). One explanation for the 
divide is that theory articles, particularly those that rely on 
mathematical models, can feel daunting to nonpractitioners. 
As a result, theory in ecology and evolutionary biology is 
frequently misunderstood and sometimes even disregarded 
altogether (Caswell 1988, Hillis 1993, Keddy 2005, Fawcett 
and Higginson 2012, Scheiner 2013, Marquet et  al. 2014, 
Servedio et al. 2014). Indeed, surveys have shown that even 
when theoretical papers are cited in empirical work, the 
authors of the theory papers often perceive these citations 
as incorrect, inappropriate, or too general (Servedio 2020). 
The development of theoretical and experimental biology 
as separate fields can come at the cost to either pursuit, and 
it can hinder our ability to develop the predictive models 
needed to address pressing societal challenges (Łomnicki 
1988, Kareiva 1989, Keddy 2005, Marquet et  al. 2014, 
Rossberg et al. 2019). The question of how to remove road-
blocks that prevent the full integration of theoretical and 

empirical research is therefore of great interest to progress 
in the biological sciences.

Why does a lack of integration between theoretical and 
empirical work persist? Some authors argue that biology 
programs could benefit from increased formal mathemati-
cal training (Chitnis and Smith 2012, Rossberg et al. 2019), 
and it is true that, even though mathematics permeates 
biology, many students only find out about this later in their 
academic careers (Otto and Day 2007). But this gap is also 
driven by persistent communication barriers between theo-
reticians and empiricists (Servedio 2020). Communication 
is ultimately a matter of how well the reader decodes the 
presented information. The effectiveness of communication 
is therefore the responsibility of both the transmitter and the 
receiver of information. Viewed this way, increasing math-
ematical training (Chitnis and Smith 2012, Rossberg et  al. 
2019) or providing guidelines for understanding theoretical 
work (Grainger et al. 2021) increases the adoption of theory 
by empowering empiricists with the mathematical back-
ground needed to effectively decode theory. But the converse 
is also true: Empiricists can better decode theory if it is com-
municated in a more accessible manner (Shoemaker et  al. 
2021). In this article, we use insights from cognitive load 
theory to propose recommendations for communicating 
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theory in a more accessible manner, thereby bridging the 
communication gap between theoreticians and empiricists.

Cognitive load theory, which is focused on impediments 
to knowledge acquisition, serves as a rigorous evidence-
based reference from which we can draw guidelines to 
assist in the effective presentation of information (Sweller 
and Chandler 1994). We begin by reviewing, in brief, broad 
themes from cognitive load theory and how it can be applied 
to the writing of theoretical papers. We then provide specific 
recommendations that pertain to the type of cognitive load 
(i.e., burdens on working memory) that are imposed when 
interpreting theory. Specifically, these types of load include 
those that relate to the details of a mathematical model (i.e., 
mathematical approach, notations, and graphical represen-
tations) and those that relate to the intuition and reasoning 
behind the conceptual theory (i.e., abstractions, narratives, 
and assumptions). As a group of theoreticians and empiri-
cists working in ecology and evolutionary biology, our 
intention is neither to castigate nor to dictate which writing 
practices are right or wrong; we recognize that there are no 
hard and fast rules when it comes to communication. Rather, 
we aim to provide suggestions to help theoreticians commu-
nicate more effectively with empiricists.

Every learning or problem-solving task imposes a mental 
demand on the learner or problem solver. Although the per-
ceived demand can be subjective and influenced by context 
(e.g., how tired or distracted the learner is; Kantowitz 1987, 
MacDonald 2003), there are objective characteristics of the 
task, known as cognitive load, that can affect learning out-
comes (Plass et al. 2010). Built on the understanding of the 
capabilities and limitations of how humans process informa-
tion (e.g., encoding, storing, and modifying information, 
also known as human cognitive architecture), cognitive load 
theory provides a rich body of knowledge and a toolkit of 
principles that can be applied broadly to enhance learning 
outcomes. Therefore, we can draw insights from cognitive 
load theory to address communication barriers between 
theoreticians and empiricists by providing suggestions to 
help the former communicate their work in a way that facili-
tates knowledge acquisition by the latter.

Cognitive architecture
The human cognitive architecture can be divided into two 
main memory systems: long-term memory and working 
memory (Baddeley 1992, Sweller et  al. 1998). As its name 
suggests, long-term memory is stored indefinitely and has 
no known limits. In contrast, the capacity of the working 
memory is limited, and information is stored only tempo-
rarily. Examples of long-term memory include unconscious 
cognitive activities, such as the ability to read familiar 
words without carefully reading every letter. The process-
ing of new vocabulary goes through the working memory; 
the reader may have to consciously verbalize each syllable 
and pay attention to the structure of the word (e.g., affixes, 
morphemes) in order to get a sense of its pronunciation and 
meaning.

Experts and novices can be distinguished by whether they 
are able to effectively organize knowledge stored in long-
term memory; this is the idea of having intuition in the col-
loquial sense. In other words, experts categorize information 
systematically, according to its use and subject matter, into 
coherent clusters called schemata (Chi et al. 1982). Schemata 
enable experts to efficiently process information because 
they bypass the limited capacity of the working memory 
and allow organization of knowledge contained in long-
term memory. To facilitate schema acquisition, cognitive 
load theory identifies distinct types of cognitive load in the 
working memory and recommends specific interventions 
for overcoming each type (Sweller et al. 1998, 2019).

Types of cognitive load
The cognitive load associated with a given task determine 
the efficiency with which an individual understands the 
material. These types of load can be classified into three 
distinct types: intrinsic load, extraneous load, and germane 
load. Intrinsic load refers to the complexity inherent to the 
problem at hand. Some materials are inherently more dif-
ficult because they contain more elements that must be 
considered simultaneously in order to be comprehended 
(figure 1; Maybery et al. 1986, Sweller and Chandler 1994). 
In contrast, an extraneous load is not unique to the specific 
task, but rather, it is influenced by the way in which the 
material is presented (figure 1; Sweller and Chandler 1994). 
Finally, germane load refers to the mental resources that are 
devoted to organizing new knowledge into schemata (i.e., 
relating new ideas to previously existing knowledge into 
coherent clusters of information; figure 1). Because intrinsic 
load is a property inherent to the material and, therefore, 
cannot be altered, instructional interventions based on 
cognitive load theory work by altering the other two types 
of cognitive load (Sweller et  al. 1998). Specifically, the 
efficiency of instructional design is optimized by reducing 
the extraneous load and increasing the germane load. An 
overview of the three types of cognitive load and how each 
relates to learning and to schema acquisition is illustrated in 
figure 1.

Recommendations
In the following sections, we provide recommendations for 
how theoreticians can reduce communication barriers that 
are inspired by pedagogical interventions suggested in cog-
nitive load theory. We organize these recommendations into 
two broad categories: those that increase germane load by 
helping the reader organize new information into preexist-
ing or novel schemata (i.e., relating new ideas to preexisting 
knowledge in a coherent way) and those that reduce extrane-
ous load by reducing the amount of mental effort it takes to 
understand new concepts. This organization is practical, but 
it should not be considered absolute, because some of our 
suggestions blur the distinction between the two categories 
(and, when followed effectively, may both increase germane 
load and reduce extraneous load).
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Figure 1. Schematic illustration of cognitive load. (a) Julie is an amateur birder with a basic understanding of bird 
taxonomy. She categorizes birds according to their evolutionary relationships and their characteristics—for example, what 
environments they inhabit. This is her schema: the organizing framework through which she understands avian diversity 
(represented by the fictional phylogeny). She is presented with the task of identifying a bird in two different scenarios in 
subpanels (ai) and (aii). The two scenarios are associated with very different levels of intrinsic, extraneous, and germane 
load, as was shown in the meters on the right. In subpanel (ai), intrinsic load is high because the bird is a house wren (a 
plain brown bird, often quick, hard to see, and easy to mistake for other species). Extraneous load is also high because the 
rain makes the wren hard to see. Germane load is close to nonexistent; there is nothing about the situation that relates the 
task to Julie’s preexisting schema (e.g., there are no environmental cues because the bird is in a human-made habitat). In 
contrast, subpanel (aii) has a low intrinsic load because a penguin has very distinct characteristics. Extraneous load in 
this scenario is negligible because there are few distractions that are irrelevant to identifying the bird. Germane load is 
high because the bird is presented in its natural habitat, which Julie can relate to her preexisting knowledge that penguins 
are aquatic birds (part of her schema). Pedagogical interventions should aim to reduce extraneous load and increase 
germane load. The same concepts apply to mathematical learning tasks. In (b), Julie is learning about mathematical 
models of population growth. She has a schema for elementary calculus and a schema for population growth, but the two 
schemata are not yet strongly connected. Although the tasks presented in bi and bii both concern differential equations 
for population growth, bi is a harder task because of the additional Allee effect term (higher intrinsic load), unfamiliar 
notations (higher extraneous load), and being presented with no context whatsoever (lower germane load). In contrast, the 
population growth equation in bii is simpler (lower intrinsic load) and it is written in notations that are familiar to Julie 
(lower extraneous load). The presentation in bii also provides all the necessary definitions of terms and visuals, which 
allow Julie to connect her knowledge about population biology to her knowledge about calculus (high germane load).
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Increasing germane load
As was briefly introduced above (and as is illustrated in 
figure 1), germane load comprises the cognitive resources 
devoted to organizing new information into schemata. 
Recall that learning is most effective when intrinsic and 
extraneous load are low and when germane load is high. 
Increasing germane load means helping the reader under-
stand new ideas by relating them to other known concepts. 
In this regard, learning theory can be particularly hard 
because the defining features of a theoretical model are often 
buried deep within the abstractness of mathematics. In this 
section, we first discuss why mathematical abstractions are 
useful in science and why they may be particularly hard to 
learn. We then provide recommendations on how to help the 
reader maximize germane load, including how one might go 
about addressing the obscurity of abstractions.

The utility of mathematics in scientific research stems 
from its ability to form abstractions of natural phenomena. 
Forming abstractions means generalizing beyond the particu-
lars of a given observation, by identifying structures, patterns, 
or properties that are common to many other observations or 
even to different types of natural phenomena (Ferrari 2003, 
Marquet et al. 2014, Servedio et al. 2014). However, the util-
ity of abstractions can come at the cost of clarity, especially 
when complex symbolic expressions are used to represent 
them (Ferrari 2003). Moreover, high levels of abstraction 
can conceal the connection to real-world phenomena and 
cause misunderstanding or misinterpretations. For novices, 
abstract concepts may be particularly hard to learn because 
their generality creates the additional task of differentiating 
the scenarios where the abstract concept applies and where 
it does not. This additional task of differentiating may create 
a high mental load for novices (Sweller and Sweller 2006). In 
fact, theoretical expertise is often built by stretching the limits 
of a model’s applicability (e.g., by finding counterexamples or 
solving for boundary conditions).

As a concrete example of how abstraction can be useful 
while simultaneously creating challenges to interpretation, 
consider the concept of Shannon entropy. Although origi-
nally developed as a means of quantifying information, the 
concept’s high level of abstraction makes it broadly appli-
cable in fields as diverse as cryptography, data compression, 
probability theory, and ecology. In ecology, Shannon entropy 
provides a measure of species diversity that incorporates both 
species richness (number of elements) and evenness (relative 
proportions). This measure is often misused because the 
resulting value of the function is an index of species diversity 
(as a result of its abstraction) rather than species diversity per 
se (Jost 2006). For example, if hypothetical communities A 
and B have a Shannon entropy of 4.4 and 4.6, respectively, 
a naive (hypothetical) ecologist may conclude that the two 
communities are similar in species diversity. However, after 
conversion to the proper units, community B (99 species) 
actually contains 17 more “equally common” species than 
community A (81 species). This is because Shannon entropy 
scales proportionally to the natural log of the number of 

species. This scaling relationship might seem insignificant, 
but statistical estimates of effect size and significance on raw 
entropy indices may result in incorrect inferences of species 
diversity (Jost 2006). As this example illustrates, abstrac-
tions (often expressed through mathematical formulations) 
provide versatility but can impede understandability. In the 
following section, we provide recommendations for how 
theoreticians can make abstractions more concrete in order 
to increase the accessibility of their research to empiricists.

Using metaphors and analogies. Making analogies is core to 
human cognition (Gentner et al. 2001). By mapping relation-
ships between disparate domains on the basis of relational 
similarity, making analogies allows us to transfer knowl-
edge across contexts (Gentner 1983, Holyoak et  al. 1984). 
Research in cognitive psychology has demonstrated that 
abstract concepts are understood via mental simulations 
of physical actions (Barsalou 1999). By conceiving of one 
thing in terms of another, through analogies, an author can 
communicate meaning in terms of something previously 
experienced and concrete to its readers. In this way, analo-
gies can enhance germane load by serving as scaffolds that 
facilitate the mental modeling process and the acquisition 
of schemata (Goldin-Meadow et  al. 2001, Lee 2007, Cheon 
and Grant 2012, Niebert and Gropengiesser 2015, Sweller 
et al. 2019). This, at least in part, explains why metaphors (an 
implicit analogy; Hsu 2006) have played a prominent role in 
the advancement and communication of science (Lakoff and 
Johnson 1980, Thibodeau and Boroditsky 2011). In ecology 
and evolutionary biology, metaphors such as environmental 
filtering, molecular clock, Red Queen, and evolutionary tin-
kering are so powerful for communicating ideas because they 
associate otherwise abstract concepts with mental images of 
familiar objects or processes (Olson et al. 2019). More impor-
tantly, these metaphors help convey ideas not only between 
researchers within disciplines but also across disciplines, 
because they instill images of our everyday experiences. As 
such, we recommend the use of metaphors and analogies in 
general, to help facilitate the creation of mental models and 
enhance interpretability of abstract ideas whenever possible. 

When writing theory, one can consider its mechanistic 
similarities to other known mechanisms in the literature. 
For example, the storage effect (Chesson and Warner 1981) 
in coexistence theory can be thought of as niche partition-
ing in time (or space). Storage effect might be a term familiar 
only to practitioners of coexistence theory, but the concept 
of niche partitioning is likely familiar to anyone who has 
taken any introductory course in ecology and evolution. As 
a word of caution, we recognize that metaphors themselves 
may be vague and lead to misunderstandings (Jacob 1977, 
Kaplan 2008); however, careful selection of metaphors and 
being explicit and transparent about limits to the metaphor’s 
applicability can help maximize its utility (Olson et al. 2019).

Providing narrative context. Scientific discoveries and endeavors 
often originate from observations of real-world phenomena. 
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To explain these phenomena, theoreticians and empiricists 
draw from their preexisting knowledge to develop mental 
models or verbal hypotheses. In empirical work, these men-
tal models are tested by devising experiments and gathering 
data. Analogously, in theoretical work, they are tested by 
creating a mathematical model capable of generating precise 
predictions that can be compared with verbal predictions 
(Servedio et  al. 2014). In this way, the lines of reasoning, 
or narratives, that seek to explain observations precede the 
development of theoretical models (Otto and Rosales 2020) 
just as much as they precede experiments. These narratives 
do not rely on mathematics and logical axioms but, rather, 
on mental simulations of probable scenarios (Johnson-Laird 
2010); they are highly contextual and have a great influence 
on how models are built. They also influence the conclu-
sions and inferences that one draws from models after they 
are created (Otto and Rosales 2020). Differences in narra-
tive reasoning can matter so much as to cause disputes in 
the development of a field. For example, the debate over 
the relative importance of density-dependent and density-
independent mechanisms for population regulation can be 
partially attributed to the different inferential methods (field 
observations versus controlled lab experiments), or narrative 
context, applied by the supporters of each camp (Hutchinson 
1957). In evolutionary biology, conflicting interpretations 
about the effect of sexual reproduction on rates of adapta-
tion arise from whether a finite population size is assumed, 
an assumption made on the basis of narrative reasoning by 
the investigator (Otto and Rosales 2020).

By emphasizing the narrative reasoning behind new 
models, theoreticians can provide context to readers and 
resolve any ambiguities they may encounter along the way. 
Narratives provide the reader with a verbal motivation for 
the choice of methods and interpretation of the results. It 
is the narrative, rather than the equations themselves, that 
imbues models with meaning (Otto and Rosales 2020). To 
do this, a theoretician can inform the readers of the whole 
conceptualization process of the theoretical model. In the 
introduction, instead of simply stating the knowns and 
unknowns in current literature, a theoretician can speculate 
possible reasons for how and why the focal field of research 
has developed the way that it has. They can remind the 
reader of the empirical phenomenon being modeled, discuss 
the theoretical approaches that have been taken, but also 
elaborate on why those particular approaches were taken. 
Although it is important that the mathematics is accurate, 
it is also important that the narrative reasoning on which 
models are built and interpreted is sound and effectively 
communicated.

To give a concrete example of a theory sparked by 
empirical observation, narrative reasoning, and abstrac-
tions, consider the famous anecdote of Newton’s falling apple 
as recalled by William Stukeley (1752): “Why should [the 
apple] not go sideways, or upwards? But constantly to the 
Earth’s centre? Assuredly, the reason is, that the Earth draws 
it. There must be a drawing power in matter.” When Newton 

was questioning the apple’s motion, he was really asking 
why anything would fall toward Earth. More generally, he 
was really questioning what laws of motion were at play. 
Through abstraction, he was able to make general inferences 
about the laws of motion: the apple and the Earth as hypo-
thetical spherical objects with a given mass. Questioning 
why the apple fell downward and not sideways or upward 
was his narrative reasoning about the origin of the forces. 
He applied what he knew about the mass scaling of spherical 
objects (preexisting schema) and inferred that the attraction 
must be proportional to the masses of the two objects and 
their squared distances. Although his mental model was that 
of an apple, the theory and mathematical model he devel-
oped were general in the sense that they could be applied to 
explain the attraction of any bodies of mass, including that 
of celestial bodies.

Stating assumptions and explaining their purpose. A famous Lewis 
Carroll passage describes a fictional map that had “the scale 
of a mile to a mile” (Carroll 1893). When asked how fre-
quently the map was used, one of the characters replies, “it 
has never been spread out yet” because “the farmers objected: 
They said it would cover the whole country and shut out the 
sunlight! So now we use the country itself, as its own map, 
and I assure you it does nearly as well.” Models, like maps, are 
useful only inasmuch as they simplify nature (Levins 1966; 
see also Orzack and Sober 1993, Levins 1993), otherwise the 
resulting equations would have too many parameters and be 
impossible to solve or interpret. Therefore, all models make 
simplifying assumptions, ideally in a way that preserves the 
essential features of a problem (Levins 1966). Despite its 
importance, the exercise of making constraining assump-
tions is the step of the model-building process that poses one 
of the greatest cognitive difficulties to those who are unfa-
miliar with modeling (Fortus 2009). The ability to conceive, 
select, and apply subjective assumptions is not developed in 
conventional education settings (Seino 2005), even at the 
undergraduate level and in quantitative disciplines such as 
physics (Fortus 2009) or engineering (Peters 2015). Readers 
who are less familiar with modeling might not have the 
conceptual schemata that allow them to understand which 
assumptions are relevant and why (Peters 2015), according 
to cognitive load theory; therefore, clearly stating model 
assumptions and their purpose increases germane load. It 
is therefore not only important for theoretically inclined 
readers who may want to follow the mathematical details, 
but for empiricists as well. It helps readers understand how a 
real-world problem gets converted to a well-defined model, 
which, in turn, allows them to see what natural systems the 
model applies to, how it can be tested, and which parts of 
the model are most relevant for its qualitative behavior. All 
of this is necessary if empiricists are to attempt to validate 
model predictions and establish connections between theory 
and empirical studies (Servedio 2020).

It is critical to not only clearly state what was assumed 
but also why. Broadly speaking, assumptions are made 
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for one of three reasons: critical, exploratory, or logisti-
cal (Servedio et  al. 2014, Servedio 2020). In the present 
article, we first describe each kind of assumption and then 
describe how to avoid misunderstandings that may arise 
when making them. Critical assumptions are those that are 
essential for modeling a given biological process or ask-
ing a particular question. Without those assumptions, the 
model does not accurately describe the process it purports 
to study. For example, if studying the probability of genetic 
rescue during environmental change, one has to assume 
that such environmental change has a detrimental effect 
on fitness. Exploratory assumptions are those decisions 
that are not essential, but that we have to make in order to 
limit the full range of possibilities. They provide a point of 
entry into the analysis. Building further on our evolution-
ary rescue example, for instance, we can assume that the 
environmental change happens gradually and continuously 
at some constant velocity, or alternatively, we may assume 
a discrete change between different environmental states. 
Making alternative exploratory assumptions would provide 
additional insight but is not always feasible. Finally, logis-
tical assumptions are made merely to simplify the model 
and allow for mathematical tractability. For example, when 
calculating the fitness of an individual at some distance to 
the environmental optimum, we may assume that higher-
order terms can be safely ignored. In a theory paper, if 
assumptions are not stated or properly justified, the reader 
may justifiably think the conclusions are valid outside their 
range of applicability. Conversely, they may also disregard 
the results because of a belief that logistical assumptions 
made for the sake of convenience are actually critical to the 
reported results.

What can the author do to reduce misunderstandings? 
It depends on the type of assumption. When making 
exploratory assumptions, one could be clear that alterna-
tive possibilities exist, and even, if possible, make educated 
speculations regarding their potential consequences. When 
making logistical assumptions, one could, as much as pos-
sible, explain their biological implications. To return to the 
example from the previous paragraph: Ignoring higher-
order terms may be equivalent to assuming weak selection. 
One could also clarify when the purpose of these assump-
tions is to reduce complexity, rather than to mimic nature. 
If possible, it is important to try to ensure that logistical 
assumptions have no qualitative effect on the results. If one 
has no good reason to suppose that the results are robust to 
a logistical assumption, then one can transparently acknowl-
edge the potential consequences of relaxing it. Critical 
assumptions are less likely to induce misunderstandings, but 
it is helpful to provide a clear link between the mathematical 
form of the model and the biological process it is meant to 
represent.

The type and extent of assumptions one makes are related 
to the goals of the model. Because models have differ-
ent purposes, one does not always need to ensure that all 
assumptions are realistic; models can be valuable even when 

their aim is not to closely represent nature. However, when 
assumptions are not realistic, it is especially important to 
explain why they were made. In some cases, there may be 
no empirical knowledge to help guide the choice of assump-
tions. In other cases, assumptions may be made with the 
explicit purpose of demonstrating that they have impor-
tant qualitative consequences (proof of concept models; 
Servedio et  al. 2014). This may in turn motivate empirical 
work to verify such assumptions. For example, Charlesworth 
and colleagues (1997) performed numerical simulations to 
demonstrate “the qualitative effects” of mutation rate on 
population differentiation. They freely admit that they “did 
not choose biologically plausible values” of mutation rate, 
but rather “values that would produce clear-cut effects” 
(Charlesworth et al. 1997). The assumptions were not meant 
to be realistic, but the model still provided proof of concept 
that background selection can affect differentiation. This 
theoretical paper then motivated further research to check 
whether the pattern actually holds in realistic scenarios, 
using empirically derived recombination maps (Matthey-
Doret and Whitlock 2019).

Defining terms and describing their biological meaning. Even when 
mathematical notation is consistent and familiar, it is critical 
to define every term and describe its biological interpreta-
tion. This helps the reader build intuition and categorize 
novel information into relevant schemata, which increases 
germane load and allows a broader readership to understand 
one’s results (even if only qualitatively).

By itself, a mathematical expression is meaningless; it 
gains explanatory power only when all the parameters and 
variables are defined. For example, many ecologists are 
familiar with the equation for logistic growth, 

= −dx
dt

rx x(1 ),

and may think that it is unnecessary to define r as the intrin-
sic growth rate and x as the population size. Evolutionary 
biologists, however, may assume that x represents allele 
frequency and r represents the selection coefficient, and 
they may reasonably conclude that the equation describes 
response to selection rather than logistic growth (Otto and 
Rosales 2020). A table summarizing the description and 
value of parameters (and their units, if applicable) can also 
be helpful and can reduce the load associated with remem-
bering a large number of symbols.

In addition to defining the parameters, it is helpful to 
provide a description of their biological meaning. Biological 
meaning is the translation between the mathematical effect 
of a parameter and its biological interpretation. Take the 
effect of interspecific interactions in a Lotka–Volterra com-
petition model, often represented as a. A simple sen-
tence such as “a > 0 represents competitive interactions, 
whereas a < 0 represents facilitative interactions” can greatly 
aid understanding. Providing biological meaning also 
includes describing a parameter’s units (when applicable) 
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or explaining the biological interpretation and reasonable 
range of dimensionless quantities.

Apart from parameters, it is also useful to provide bio-
logical interpretations for entire equations and for impor-
tant results. Consider, for example, Holling’s disc equation 
(Holling 1959):

=
+

f R
aR
ahR

( )
1

,

where f(R) denotes a consumer’s intake rate given resource 
density R. In this equation, a is the rate at which the con-
sumer encounters resources per unit of resource density 
(attack rate) and h is the average time spent processing a 
resource item (handling time). Even though all the param-
eters have been defined in clear biological terms, the way in 
which these parameters interact is not necessarily evident. 
To make the equation’s biological meaning transparent, we 
could point out that, for a given population size of preda-
tors, the intake rate increases with resource density when 
resources are not abundant but levels off at high resource 
densities. This makes sense because at very high resource 
densities consumers find resources easily but are limited 
by their capacity to process them, for example, because of 
satiation.

Providing links to empirical research. Beyond communicating 
theory effectively, a healthy feedback between theoretical 
and empirical work ultimately depends on how knowledge 
gained from one can guide knowledge acquisition of the 
other. To increase the adoption of theory in empirical work 
we recommend that theoreticians explicitly state the types of 
experiments that can be conducted to validate their theory. 
What are the variables that need to be collected? Are they 
straightforward to measure, or will empiricists need to find 
proxies? How can the models be fitted to the data? What kind 
of evidence is required for inference (e.g., qualitative trends 
or specific parameter values)? For instance, the metabolic 
theory of ecology not only predicts a sublinear relationship 
between metabolism and body size but also makes the spe-
cific prediction that it scales to the power of ¾ (West et al. 
1997). In this case, the theory can be validated by measuring 
body size and metabolism of various organisms, the com-
piled data set can then be fitted to a power law model and 
be statistically tested to see whether the estimate deviates 
significantly from the theoretical value of ¾. In some cases, 
empirical validation of theoretical models might require 
development of new tools or technologies (e.g., faster algo-
rithms, new instruments, or statistical frameworks). Even 
stating obstacles that one might need to overcome before 
empirical work can be conducted can be a good starting 
point, highlighting which areas still need work. Importantly, 
these statements not only can increase adoption of theory 
but can also solidify understanding by casting the theory 
in terms that are relevant to an empiricist. In other words, 
it helps relate the theory to previously existing categories of 
information (i.e., schema acquisition).

Reducing extraneous load
As is illustrated in figure 1, extraneous load refers to the 
additional mental effort that is generated by the manner in 
which information is presented to a learner (Sweller and 
Chandler 1994). Reducing extraneous load means avoiding 
burdening the reader with superfluous details or distractions 
or with an unnecessarily complicated presentation.

Adjusting the level of mathematical detail to the target audi-
ence. Fawcett and Higginson (2012) showed that, in top 
journals specializing in ecology and evolution, papers 
receive 28% fewer citations overall for each additional 
equation per page in the main text. Although citation rates 
are not necessarily an indication of quality (Fernandes 
2012), and reducing the number of equations could in 
some cases decrease intelligibility, one important message 
from this finding is that the amount of mathematical detail 
in the main text could be calibrated to the target audience. 
In some journals (e.g., The American Naturalist) equations 
actually increase citation rate (Gibbons 2012); further-
more, equation-dense papers tend to be cited more fre-
quently by other theoretical papers (Fawcett and Higginson 
2012). If, on the other hand, the target audience consists 
mostly of scientists specializing in empirical research, there 
are several approaches that allow an author to reach more 
readers without sacrificing rigor.

One approach is to decrease equation density by adding 
more explanations between each equation, to ensure that 
readers understand the notation, assumptions, biological 
meaning, and purpose of the mathematical methods being 
employed. This can include a step-by-step explanation 
of each term in an equation (for a good example, see 
Thompson et  al. 2020). It can also include explanations 
ahead of the technical sections that “kill the suspense” by 
revealing the purpose of each section and flagging important 
parts of the argument. Because close to half of empiricists 
reportedly skip technical sections in papers (Haller 2014), 
this kind of signposting may help readers decide for them-
selves which sections to pay attention to and which sections 
they can skim or skip.

An alternative (and complementary) approach is to 
minimize the mathematical details in the main text and 
move them to an appendix. When using this approach, 
the main text would describe the model in general terms 
and convince readers that the mathematics provides new 
insights that would not be obvious otherwise, whereas the 
appendix would show the readers how they can recreate 
the results from the main text. Importantly, the text in 
the appendix should not take mathematical deduction as 
common sense, and should instead show readers all the 
intermediate steps. One can provide an intuitive road map 
of the calculations so that readers know where they are 
stuck and can move forward even if they do not under-
stand a particular step. Offering the reader a reproducible 
notebook (e.g., a Mathematica notebook or equivalent) 
may be desirable.
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Adjusting the level of mathematical detail goes beyond 
judicious use of equations. Mathematical jargon or special-
ized terminology plays a similar dual role: It may increase 
rigor and facilitate communication between theoreticians, 
but it may also decrease accessibility with respect to other 
readers. Just as with equations, extensive use of jargon 
correlates with decreased citation numbers (Martínez and 
Mammola 2021). Although this does not mean authors 
should avoid jargon altogether, Martínez and Mammola 
(2021) recommended that jargon be restricted to appropri-
ate sections of the paper. In the case of articles describing 
theoretical models, this could be the methods section or 
the appendix. Alternatively, authors can provide accessible 
definitions (or at least intuitions) for the meaning of jargon 
terms. We suggest that the appropriate level of jargon, much 
as the appropriate amount of mathematical detail, should 
depend on the target audience.

Using consistent, intuitive notation. The use of mathematical 
notation can improve communication by increasing preci-
sion and efficiency relative to prose. Equations are also often 
simpler and more straightforward than equivalent verbal 
statements, especially when the verbal form is long and 
convoluted, which imposes substantial extraneous cognitive 
load (Leung et al. 1997). However, some styles of mathemati-
cal notation can also hinder communication when it is hard 
to decipher. Equations with nonstandard or unnecessarily 
complex notation impose heavy extraneous load, forcing the 
reader to search and assimilate semantic meanings for unfa-
miliar symbols (Dee-Lucas and Larkin 1991, Leung et  al. 
1997). By employing careful notation and providing biologi-
cal interpretations, theoreticians can improve the reader’s 
understanding. Below, we provide some guidelines on the 
use of mathematical notation in biological modeling; for a 
more extensive treatment of the same topic, see Edwards and 
Auger‐Méthé (2019).

Careful notation is consistent. The meaning of a symbol 
should not change throughout the article and, conversely, 
the same concept should always be represented by the 
same symbol. For instance, the derivative (with respect to 
x) of a function f(x) is conventionally represented as f ʹ(x) 
(Lagrange’s notation) or as df /dx (Leibnitz’s notation), but 
one should not alternate between them within the same 
article.

Ideally, although this is not always possible, one could 
also strive for semantic consistency—that is, using related 
symbols for related concepts. A familiar example of 
semantic consistency is the use of Greek letters to denote 
population parameters (such as the population mean m 
and the population standard deviation σ) and Roman 
letters for their sample counterparts (sample mean x–, 
sample standard deviation s). Another common example 
is the use of contiguous letter sequences to indicate quan-
tities that follow an ordinal sequence—for example, x, y, 
z to represent the first, second, and third spatial coordi-
nates or i, j for the first and second indices of a matrix. 

Consistency can extend to font styles as well. For instance, 
it is common to use roman lowercase boldface letters to 
represent vectors and roman uppercase boldface letters to 
represent matrices. It would be confusing to denote some 
matrices with uppercase variables and other matrices with 
lowercase variables.

Finally, notation should ideally also be consistent with 
the conventions of one’s field as well as with broader 
mathematical conventions. In ecology, N or n is often 
used to represent population size, t represents time, and r 
represents growth rates. Understanding the equation for 
exponential growth rate, n(t) = n0 exp(rt), where n0 is the 
initial population size, is straightforward partly because it 
abides by these conventions. Familiarity with the symbols 
carries across articles, decreasing the extrinsic load faced 
by the reader when encountering a new equation. If we 
replaced these symbols by unfamiliar alternatives (e.g., 
δ for population size, X for growth rate, and f for time), 
interpretation would be considerably more difficult: 
δ( f ) = δ0 exp(Xf ).

Providing programs or scripts. Facilitated by the advent and 
utility of modern computers, programming has become 
a toolkit of many modern-day biologists (Touchon and 
McCoy 2016, Lai et  al. 2019). This provides a unique 
opportunity for theoreticians to communicate their 
mathematical models in the form of source code—a 
written set of instructions that specify the actions to 
be performed by a computer. Although the accessibil-
ity of source code may differ between programming 
languages, high-level programming languages that are 
popular among the scientific community (e.g., Julia, 
Python, and R) incorporate natural language elements 
(i.e., words such as while, if, or function). This renders 
instructions for the computer into worked examples that 
readers can break apart into constituent parts to facilitate 
learning (Sweller and Cooper 1985, Paas et  al. 2003). 
Furthermore, because readers may be more familiar with 
programming than with mathematical notation, provid-
ing code can greatly reduce the amount of items in a 
reader’s working memory, enabling them to focus their 
attention on the main findings instead of mathemati-
cal nuances. For example, an empiricist unfamiliar with 
mathematical notation may take several minutes to rec-
ognize that y and x in the equation

yi = xk , for i = {1, 2,…,N}
k=1

i

∑
are vectors and might take a few more minutes to realize 
that the equation represents the cumulative sum function 
(Edwards and Auger‐Méthé 2019). In contrast, a biologist 
with programming experience will have no trouble recog-
nizing the same function in the form of R code:

y <- cumsum (x)
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Importantly, this approach relies on the reader being 
familiar with the particular language being employed. 
Because programming languages fall in and out of favor 
over time, Edwards and Auger‐Méthé (2019) caution against 
providing only the code as a substitute for mathematical 
equations.

Providing code is becoming increasingly common 
and is now required in many journals, particularly for 
simulation-based studies. However, even if readers have 
some familiarity with programming, the complexity of 
an analysis or model can be so complicated that the code 
is effectively inaccessible to the reader. For this reason, 
good coding practices can go a long way (Wilson et  al. 
2014, 2017). Because human working memory is limited, 
pattern recognition is fine-tuned, and attention spans are 
short (Wilson et al. 2014), having human-readable scripts 
that are well commented throughout can greatly reduce 
extraneous load and allow readers to easily pick up on 
the main functions of the program and their relation 
to the models presented. This is particularly important 
for reproducibility in another programming language 
because readers might not be familiar with an author’s 
choice of programming language (Tiwari et  al. 2021). 
Moreover, following good coding practices—for example, 
consistent naming conventions for variables (camelCase 
or pothole_case)—can enhance accuracy and reduce the 
time it takes for readers to interpret computer programs 
(Letovsky 1987, Binkley et al. 2019). We limit our recom-
mendations of good coding practices in the main text, 
because this subject has been discussed extensively else-
where (e.g., Wilson et al. 2014, 2017, Tiwari et al. 2021).

Not all readers are able to read code, or read code from 
specific programming languages. Building interactive apps 
(e.g., Shiny apps) can overcome this problem and provide 
another option for readers to play with and visualize mod-
els; for an example, see http://mmosmond.shinyapps.io/
criticalsplines, which is a companion app to Osmond and 
Klausmeier (2017). Finally, we also recognize that imple-
menting good coding practice and reproducible code is 
another skill that takes time to master. However, authors 
should not hesitate to publish code even if the quality 
is not perfect; the act of making code accessible alone 
is enough to enable others to better engage with theory 
(Barnes 2010).

Visualizing the model and the results. Abstract mathemati-
cal ideas are communicated to readers through so-
called external representations: physical manifestations 
or symbols that can be perceived by the senses (Pape 
and Tchoshanov 2001). Common external representa-
tions include equations, tables, diagrams, and charts. 
Studies in the mathematics classroom context suggest 
that the simultaneous use of multiple representations 
facilitates the understanding of mathematical concepts 
(Brenner et  al. 1997, Greeno and Hall 1997). Cognitive 
load theorists argue that visual and verbal information 

are processed by independent working memory systems. 
The use of multiple presentation modalities distributes 
load across systems, increasing the capacity of working 
memory (Kirschner 2002). On the basis of these consid-
erations, we suggest that visual representations should 
play an important role in communicating mathemati-
cal models. This includes graphical representations of 
the model itself, graphical representations of key equa-
tions and results, and numerical illustrations of model 
dynamics.

A graphical representation of a dynamic model 
(figure 2) can take the form of a stock and flow diagram, 
which illustrates the interactions and relationships 
between variables (e.g., Ogbunugafor and Robinson 
2016). In such a diagram, each variable is represented 
by a box (a stock). The value of the variable can 
increase via inflows (arrows moving toward the box) 
or be depleted via outflows (arrows moving away from 
the box). The arrows, which are typically labelled with 
corresponding rates, may connect different variables, 
highlighting their relationships and interdependencies 
(figure 2a, 2b). Another helpful graphical representa-
tion, useful for discrete-time models, is the life cycle 
diagram, which shows the order of events that occur 
during a single model time step. Figures such as stock 
and flow diagrams or life cycle diagrams provide sche-
matic pictures of the model, allowing readers to under-
stand the logic behind the corresponding differential 
or recursion equations or individual-based simulations. 
Models can also be illustrated with pictorial diagrams 
that explain the relationships between variables through 
drawings or cartoons of concrete biological objects (fig-
ure 2c, box 1). This is analogous to providing a visual-
ization of a complex experimental design, as is common 
in empirical papers.

It is also helpful to provide graphical representations of 
complicated or important equations and results. Research 
suggests that, at least among college students, interpreta-
tion of mathematical relationships is more accurate when 
they are depicted in graphical form instead of symbolic 
form (Mielicki and Wiley 2016). Particularly helpful 
depictions show the effect of varying parameters. These 
range from plots showing multiple curves for increas-
ing parameter values to more complex depictions of a 
system’s dynamics (e.g., phase plane diagrams, pairwise 
invasibility plots) or statics (e.g., bifurcation diagrams). 
Figures showing the effect of parameters on summary 
estimates (e.g., slopes) can be harder to interpret, because 
these are often further removed from the raw variables. 
Nonetheless, summary estimates may have meaningful 
biological interpretations. In such cases, these figures may 
be useful, because they allow us to synthesize the results 
of a study. When using them, it is helpful to make the 
link between the summary estimates and the raw vari-
ables explicit, either verbally or visually (e.g., if the figure 
shows the effect of a parameter on the slope, the author 
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can provide small inset figures that show the raw variables 
with different slopes).

Finally, when applicable, one can consider illus-
trating model dynamics with numerical solutions 
or individual-based simulations (e.g., time series). 
Even when this is not the main analysis technique, 
simulating different model outcomes will help readers 
understand the different dynamics embedded in more 
complicated figures (such as phase plane diagrams). 
When numerical solution or stochastic simulation is 
the main technique, it is good to provide a range of 
parameter values over which one has simulated (or the 
figure should be indicative of the broad range covered 
by the results).

Conclusions
Irrespective of discipline, learning new information will 
always require mental effort. In the present article, we 

provided an inexhaustive list of recommendations and 
guidelines for communicating theory on the basis of 
cognitive load theory, which we hope can optimize the 
distribution of cognitive load within the constraints of 
the reader’s working memory, enhancing learning and 
bridging the gap between theoretical and empirical work 
(summarized in table 1). Although our recommendations 
are organized into distinct sections, all of them work by 
maximizing one key element: familiarity. Whether it is 
using consistent notations, including additional modal 
representations (graphical versus verbal), or provid-
ing context to the scientific story, all of these work by 
finding a link (albeit subtle) between new information 
(i.e., the theoretical model) and something that is already 
familiar to the novice learner. We hope that the guidance 
presented in the present article offers a possible avenue 
toward increasing the accessibility of theory in ecology 
and evolutionary biology.

Figure 2. Different representations of the same model (see box 1 for more details). (a) A system of equations 
describing a model that keeps track of the number of individuals in an annual plant species that inhabits three 
island patches, arranged from west to east. Each generation, b seeds are produced, of which only a fraction d 
disperse, with the rest of the seeds remaining in the parental patch. Of the dispersing seeds, a fraction f disperse 
west and the remainder disperse east. No seeds that disperse outside the range survive. In the following year, all 
seeds that land on a patch grow into adults. Model adapted from Otto and Day (2007), with author permission. 
(b) A stock and flow diagram (which is equivalent to the system of equations) makes relationships between 
variables more obvious than simply writing out the equations. (c) A pictorial diagram that uses cartoons of trees 
to activate associations with prior knowledge of, and interest in, tree seed dispersal (also equivalent to the system 
of equations).
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Box 1. Graphical representations of mathematical models.

Stock and flow diagrams or life cycle diagrams are nothing more than graphical representations of a system of equations (compare 
figure 2a with figure 2b). Examples of diagrammatic representations of equations abound. For instance, the population geneticist 
Sewall Wright (1918, 1934) introduced the use of diagrams to perform causal inference (a method called path analysis). Such graphi-
cal representations do not add any information to the system of equations; from a logical standpoint, they are redundant. But they 
illustrate systematic relationships, make evident the causal connections, enable hypothesizing, and assist in understanding (Griesemer 
and Wimsatt 1989, Taylor and Blum 1991).

Over the past decades, it has become increasingly clear that visualizations and diagrams help in explaining and learning scientific concepts 
(reviewed in Phillips et al. 2010, Vavra et al. 2011). Flow diagrams and visual displays facilitate learning by distilling a complex process 
or phenomenon into a single “big picture” (Holliday et al. 1977). This enables rapid recognition and inference, makes the most relevant 
information explicit and easily identifiable (Larkin and Simon 1987), and fosters the graphic reconstruction of knowledge (Eppler 2006).
Victor (2011) uses the concept of a “ladder of abstraction” to describe the process of understanding complex concepts using visual 
representations. The reader can climb “down” from a very abstract domain of equations to a slightly more familiar domain of visual 
diagrams. Climbing further down the ladder of abstraction, one can represent elements of the model in the form of pictorial represen-
tations: diagrams that use concrete drawings, pictures, or cartoons.
Pictorial representations have many advantages over both prose and abstract diagrams. One such advantage is that they can serve as 
mnemonic aids (Eppler 2006). In an experiment with high school students, subjects that learned a task with a pictorial aid were more 
adept at remembering how to solve the task on a delayed test (Hayes and Henk 1986). In another experiment, students were better at 
grasping and retaining information on cell structure/function relationships when provided with a pictorial analogy (Bean et al. 1990). 
Another advantage is that pictures draw attention and inspire curiosity (Eppler 2006). Pictorial diagrams are also versatile, because 
they are not bound by strict rules or conventions. Even though the example from figure 2c is formally equivalent to the system of 
equations in figure 2a, this is not in general necessarily the case. For examples of pictorial diagrams that help explain models in an 
accessible way, see the illustrations in McElreath and Smaldino (2015) and Thompson and colleagues (2020).
Perhaps the greatest advantage of pictorial representations relates to their role in activating prior knowledge—that is, triggering 
associations with information that the reader already has about the objects depicted (Eppler 2006). Prior knowledge is an important 
determinant in learning (Johnson and Lawson 1998). Learners use prior knowledge to determine what information is relevant in a 
graphic, and they combine new information with prior knowledge to develop mental models (Braune and Foshay 1983, Cook 2006). 
Incorporating prior knowledge is particularly important in developing mathematical competence (Brownell 1928, 1935) because arith-
metic procedures are often understood by mentally linking them with real-world analogues, called concrete manipulatives (Resnick and 
Ford 1981). Concrete manipulatives are mental representations or metaphors that make it possible to think about new ideas in terms 
of objects with which the learner is already familiar (Fuson 1992, Hiebert and Carpenter 1992). The example depicted in figure 2c 
might activate associations with prior knowledge of (and interest in) seed dispersal or plant ecology, whereas the (formally equivalent) 
abstract diagram in figure 2b may be too generic to elicit such associations.
There are, however, some drawbacks of pictorial representations. figure 2c may be too concrete, emphasizing tree seed dispersal at the 
expense of other possible interpretations of the model (e.g., dispersal by other organisms); the diagram from figure 2b, in contrast, is 
much more general (further up in the ladder of abstraction). Pictorial representations may also sometimes be “theoretically superflu-
ous” (Taylor and Blum 1991, Cook 2006). That is, they may include so many arbitrary or illustrative features that they overwhelm 
understanding. There is a danger that readers lacking relevant schemata may focus on surface features of the illustration to the detri-
ment of the relevant information. For example: Many representations of DNA replication use color to distinguish between the original 
DNA strand and the new one. In a study (Patrick et al. 2005), novice learners noted the difference in color, but, lacking prior knowl-
edge, did not have a starting point for interpreting its meaning. Therefore, when using pictorial representations such as cartoons, it is 
important to strike the right balance between the abstract and the concrete.

Table 1. Summary table of recommendations.
Cognitive load Recommendation

Increase germane load Use metaphors and analogies

Provide narrative context

State assumptions and explain their purpose

Define terms and their biological meaning

Provide links to empirical research

Decrease extraneous load Adjust the level of mathematical detail and use signposting

Use consistent and intuitive notation 

Provide scripts and programs

Visualize models and results
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